On image sets of integer-valued polynomials

نویسندگان

  • Scott T. Chapman
  • Vadim Ponomarenko
چکیده

Article history: Received 15 November 2010 Available online 13 October 2011 Communicated by Luchezar L. Avramov MSC: 13F05 11C08 13F20 13G05 13B25

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Polynomial Parametrization of Sets of Integer Points

If, for a subset S of Z, we compare the conditions of being parametrizable (a) by a single k-tuple of polynomials with integer coefficients, (b) by a single k-tuple of integer-valued polynomials and (c) by finitely many k-tuples of polynomials with integer coefficients (variables ranging through the integers in each case), then a ⇒ b (obviously), b ⇒ c, and neither implication is reversible. We...

متن کامل

Countable composition closedness and integer-valued continuous functions in pointfree topology

‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$‎ ‎of all integer-valued continuous functions‎, ‎in the usual se...

متن کامل

Generalized Rings of Integer-valued Polynomials

The classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] that map Z into Z. We consider a generalization of integervalued polynomials where elements of Q[X] act on sets such as rings of algebraic integers or the ring of n× n matrices with entries in Z. The collection of polynomials thus produced is a subring of Int(Z), and the principal question we consider is...

متن کامل

Integer-valued Polynomials on Algebras

Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I -adic continuity of integer-valued polynomials on A. For Noetherian one-d...

متن کامل

Projective P - Orderings and Homogeneous Integer - Valued Polynomials

Bhargava defined p-orderings of subsets of Dedekind domains and with them studied polynomials which take integer values on those subsets. In analogy with this construction for subsets of Z(p) and p-local integer-valued polynomials in one variable, we define projective p-orderings of subsets of Z(p). With such a projective p-ordering for Z(p) we construct a basis for the module of homogeneous, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011